1.14 Метод узловых потенциалов

/

Ток любой ветви может быть найден из обобщенного закона Ома по известным потенциалам крайних точек этой ветви. Но крайние точки ветви являются узлами. Следовательно, при известных потенциалах узлов, токи ветвей могут быть легко найдены.

Так как один из узлов схемы может быть заземлен и его потенциал принят равным нулю, то при наличии в схеме n узлов ей соответствует система из (n-1) уравнений:

В общем случае Gkk – сумма проводимостей ветвей (1), сходящихся в узле k; Gkm – сумма проводимостей ветвей, непосредственно соединяющих узлы k и m, взятая со знаком минус. Если между какими-либо двумя узлами ветвь отсутствует, то соответствующая проводимость равна нулю. В правой части системы стоят узловые токи. В их формировании участвуют те ветви, подходящие к этому узлу, которые содержат источники ЭДС и (или) тока. Если ЭДС Ep p-ветви направлена к k-узлу, то ее вклад в формирование узлового тока Jkk равен Epgp, а если эта ЭДС направлена от k-узла, то ее вклад равен -Epgp. Если к k-узлу подтекает ток от источника тока, то он должен быть введен в Jkk со знаком плюс, если этот ток источника тока утекает от узла, то он должен входить в Jkk со знаком минус. После решения системы (1.40) относительно потенциалов определяют токи в ветвях по закону Ома для ветви, содержащей ЭДС (обобщенный закон Ома).

Система уравнений (1.40) может быть представлена в матричной форме записи:

Ее решение

По найденным потенциалам узлов находят токи ветвей.

Рассмотрим пример. В электрической цепи, схема которой представлена на рисунке 1.18, по заданным значениям ЭДС и сопротивлений рассчитать токи методом узловых потенциалов.

Схема электрической цепи

Рисунок 1.18 – Схема электрической цепи

Заземляем четвертый узел, принимая его потенциал φ4=0 Рассчитываем суммарные проводимости ветвей, сходящихся в узлах схемы:

Находим проводимости ветвей, соединяющих узлы:

Проводимости ветвей, соединяющих узлы

Рассчитываем узловые токи:

Расчет узловых токов

Полученные данные подставляем в уравнения системы (1.40) и, решая систему уравнений, находим искомые потенциалы узлов φ1; φ2; φ3. По известным значениям потенциалов узлов, используя обобщенный закон Ома, рассчитываем токи ветвей.

/

Другие разделы главы 1: