2.20 Комплексная мощность

/

Непосредственное вычисление мощности символическим методом по току и напряжению невозможно, так как мощность синусоидального тока – величина несинусоидальная. Однако для вычисления мощности по символическим изображениям напряжения и тока можно использовать искусственный прием.

Рассмотрим на комплексной плоскости векторы напряжения и тока, символические изображения которых в показательной форме соответственно равны:

причем (β-α)=φ т.е. фазовому сдвигу между напряжением и током (рис.2.28).

Комплексная плоскость

Рисунок 2.28 – Комплексная плоскость

Умножим комплекс напряжения на сопряженный комплекс тока Í=Ie-jα

Такое произведение называется комплексной мощностью:

Формула комплексной мощности

Таким образом, действительная часть комплексной мощности равна активной мощности, а мнимая – реактивной.

Реактивная мощность положительна при преобладании индуктивной нагрузки и отрицательна при преобладании емкостной нагрузки.

Модуль комплексной мощности:

Модуль комплексной мощности

/

Другие разделы главы 2: